image
Registered Address
Clean Geosphere Private Limited
91 Springboard Business Hub, Kagalwala House, Bandra Kurla Complex, CST Road, Kalina Mumbai - 400098

Email Us

contact@cleangeosphere.com

Ideal Disposal Methods

Ideal Disposals Methods

Waste sorting is the process by which waste is separated into different elements. Waste sorting can occur manually at the household and collected through curbside collection schemes, or automatically separated in materials recovery facilities or mechanical biological treatment systems. Hand sorting was the first method used in the history of waste sorting “Waste segregation” means dividing waste into dry and wet. Dry waste includes wood and related products, metals and glass. Wet waste typically refers to organic waste usually generated by eating establishments and are heavy in weight due to dampness. Waste can also be segregeconomic concern.

Non – Degredable Waste

Waste is collected at its source in each area and separated. The way that waste is sorted must reflect local disposal systems. The following categories are common : Paper, Cardboard (including packaging for return to suppliers), Glass (clear, tinted – no light bulbs or window panes, which belong with residual waste), Plastics, Textiles, Wood, leather, rubber, Scrap metal, Compost, Special/hazardous waste, Residual waste

Degredable Waste

Organic waste can also be segregated for disposal : Leftover food which has had any contact with meat can be collected separately to prevent the spread of bacteria. Meat and bone can be retrieved by bodies responsible for animal waste. If other leftovers are sent, for example, to local farmers, they can be sterilised before being fed to the animals. Peels and scrapings from fruit and vegetables can be composted along with other degradable matter. Other waste can be included for composting, such as cut flowers, corks, coffee grounds, rotting fruit, tea bags, eggshells and nutshells, and paper towels.

Incineration is a disposal method in which solid organic wastes are subjected to combustion so as to convert them into residue and gaseous products. This method is useful for disposal of both municipal solid waste and solid residue from waste water treatment. This process reduces the volumes of solid waste by 80 to 95 percent. Incineration and other high temperature waste treatment systems are sometimes described as “thermal treatment”. Incinerators convert waste materials into heat, gas, steam, and ash. Incineration is carried out both on a small scale by individuals and on a large scale by industry. It is used to dispose of solid, liquid and gaseous waste. It is recognized as a practical method of disposing of certain hazardous waste materials (such as biological medical waste).

Incineration is a controversial method of waste disposal, due to issues such as emission of gaseous pollutants. Incineration is common in countries such as Japan where land is more scarce, as the facilities generally do not require as much area as landfills. Waste-to-energy (WtE) or energy-from-waste (EfW) are broad terms for facilities that burn waste in a furnace or boiler to generate heat, steam or electricity. Combustion in an incinerator is not always perfect and there have been concerns about pollutants in gaseous emissions from incinerator stacks. Particular concern has focused on some very persistent organic compounds such as dioxins, furans, and PAHs, which may be created and which may have serious environmental consequences.

Recycling is a resource recovery practice that refers to the collection and reuse of waste materials such as empty beverage containers. The materials from which the items are made can be reprocessed into new products. Material for recycling may be collected separately from general waste using dedicated bins and collection vehicles, a procedure called kerbside collection. In some communities, the owner of the waste is required to separate the materials into different bins (e.g. for paper, plastics, metals) prior to its collection. In other communities, all recyclable materials are placed in a single bin for collection, and the sorting is handled later at a central facility. The latter method is known as “single-stream recycling.”

The most common consumer products recycled include aluminium such as beverage cans, copper such as wire, steel from food and aerosol cans, old steel furnishings or equipment, rubber tyres, polyethylene and PET bottles, glass bottles and jars, paperboard cartons, newspapers, magazines and light paper, and corrugated fiberboard boxes. PVC, LDPE, PP, and PS are also recyclable. These items are usually composed of a single type of material, making them relatively easy to recycle into new products. The recycling of complex products (such as computers and electronic equipment) is more difficult, due to the additional dismantling and separation required.

Recoverable materials that are organic in nature, such as plant material, food scraps, and paper products, can be recovered through composting and digestion processes to decompose the organic matter. The resulting organic material is then recycled as mulch or compost for agricultural or landscaping purposes. In addition, waste gas from the process (such as methane) can be captured and used for generating electricity and heat (CHP/cogeneration) maximizing efficiencies. The intention of biological processing in waste management is to control and accelerate the natural process of decomposition of organic matter.

Energy recovery from waste is the conversion of non-recyclable waste materials into usable heat, electricity, or fuel through a variety of processes, including combustion, gasification, pyrolyzation, anaerobic digestion, and landfill gas recovery. This process is often called waste-to- energy. Energy recovery from waste is part of the non-hazardous waste management hierarchy. Using energy recovery to convert non- recyclable waste materials into electricity and heat, generates a renewable energy source and can reduce carbon emissions by offsetting the need for energy from fossil sources as well as reduce methane generation from landfills. Globally, waste-to-energy accounts for 16% of waste management.

The energy content of waste products can be harnessed directly by using them as a direct combustion fuel, or indirectly by processing them into another type of fuel. Thermal treatment ranges from using waste as a fuel source for cooking or heating and the use of the gas fuel (see above), to fuel for boilers to generate steam and electricity in a turbine. Pyrolysis and gasification are two related forms of thermal treatment where waste materials are heated to high temperatures with limited oxygen availability. The process usually occurs in a sealed vessel under high pressure. Pyrolysis of solid waste converts the material into solid, liquid and gas products. The liquid and gas can be burnt to produce energy or refined into other chemical products (chemical refinery). The solid residue (char) can be further refined into products such as activated carbon. Gasification and advanced Plasma arc gasification are used to convert organic materials directly into a synthetic gas (syngas) composed of carbon monoxide and hydrogen. The gas is then burnt to produce electricity and steam. An alternative to pyrolysis is high temperature and pressure supercritical water decomposition (hydrothermal monophasic oxidation).

Pyrolysis is often used to convert many types of domestic and industrial residues into a recovered fuel. Different types of waste input (such as plant waste, food waste, tyres) placed in the pyrolysis process potentially yield an alternative to fossil fuels. Pyrolysis is a process of thermo- chemical decomposition of organic materials by heat in the absence of stoichiometric quantities of oxygen; the decomposition produces various hydrocarbon gases. During pyrolysis, the molecules of object vibrate at high frequencies to an extent that molecules start breaking down. The rate of pyrolysis increases with temperature. In industrial applications, temperatures are above 430 °C (800 °F). Slow pyrolysis produces gases and solid charcoal. Pyrolysis hold promise for conversion of waste biomass into useful liquid fuel. Pyrolysis of waste wood and plastics can potentially produce fuel. The solids left from pyrolysis contain metals, glass, sand and pyrolysis coke which does not convert to gas. Compared to the process of incineration, certain types of pyrolysis processes release less harmful by-products that contain alkali metals, sulphur, and chlorine. However, pyrolysis of some waste yields gasses which impact the environment such as HCl and SO2.

In plastic recycling, granulation is the process of shredding plastic objects to be recycled into flakes or pellets, suitable for later reuse in plastics extrusion. In the first stage, plastic objects to be recycled are fed to an electric motor-powered cutting chamber, which continually cuts the material using one of several types of cutting systems. Some systems use a scissor-like cutting motion, chevron or V-type rotor helical rotor or fly knives. The material is ground into all the smaller flakes until they became fine enough to fall through a mesh screen. In wet-granulation lines, water is continually sprayed in the cutting chamber to remove the debris and impurities, and acts as a lubricant of the steel blades; in dry- granulation lines, water is not present, but such technology generally produces output of lower quality than the wet technology. While the process is relatively simple, it must be carefully parametrized, as the high temperatures resulting from friction can damage the material and affect its plasticity. Regular maintenance and sharpening of the scissor blades are essential, as well as close monitoring of the process due to potential clogging and jamming.

In many cases, granulation may be the only step required before the plastics can be reused for manufacturing of new products. In other, the new or recycled plastic material must be remade into pellets. The material is molten and extruded into thin rods, which are then cooled in a water tank and finely chopped into small cylindrical pellets.

Urban Mining (E-Waste Management)

In the recycling process, television sets, monitors, cell phones, and computers are typically tested for reuse and repaired. If broken, they may be disassembled for parts still having high value if labor is cheap enough. Other e-waste is shredded to pieces roughly 10 centimetres (3.9 in) in size, and manually checked to separate out toxic batteries and capacitors which contain poisonous metals. The remaining pieces are further shredded to 10 millimetres (0.39 in) particles and passed under a magnet to remove ferrous metals. An eddy current ejects non-ferrous metals, which are sorted by density either by a centrifuge or vibrating plates. Precious metals can be dissolved in acid, sorted, and smelted into ingots. The remaining glass and plastic fractions are separated by density and sold to re-processors. Television sets and monitors must be manually disassembled to remove lead from CRTs or the mercury backlight from LCDs.

Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.

Anaerobic digestion occurs naturally in some soils and in lake and oceanic basin sediments, where it is usually referred to as “anaerobic activity”. This is the source of marsh gas methane as discovered by Alessandro Volta in 1776.

The digestion process begins with bacterial hydrolysis of the input materials. Insoluble organic polymers, such as carbohydrates, are broken down to soluble derivatives that become available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids. In Acetogenesis, bacteria convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide. The methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments.

Anaerobic digestion is used as part of the process to treat biodegradable waste and sewage sludge. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Anaerobic digesters can also be fed with purpose-grown energy crops, such as maize.

Anaerobic digestion is widely used as a source of renewable energy. The process produces a biogas, consisting of methane, carbon dioxide, and traces of other ‘contaminant’ gases. This biogas can be used directly as fuel, in combined heat and power gas engines or upgraded to natural gas- quality biomethane. The nutrient-rich digestate also produced can be used as fertilizer.

Recoverable materials that are organic in nature, such as plant material, food scraps, and paper products, can be recovered through composting and digestion processes to decompose the organic matter. The resulting organic material is then recycled as mulch or compost for agricultural or landscaping purposes. In addition, waste gas from the process (such as methane) can be captured and used for generating electricity and heat (CHP/cogeneration) maximising efficiencies. The intention of biological processing in waste management is to control and accelerate the natural process of decomposition of organic matter.

Wastewater Treatment is a process used to remove contaminants from wastewater or sewage and convert it into an effluent that can be returned to the water cycle with minimum impact on the environment, or directly reused. The latter is called water reclamation because treated wastewater can be used for other purposes. The treatment process takes place in a wastewater treatment plant (WWTP), often referred to as a Water Resource Recovery Facility (WRRF) or a Sewage Treatment Plant (STP). Pollutants in municipal wastewater (households and small industries) are removed or broken down.

The treatment of wastewater is part of the overarching field of sanitation. Sanitation also includes the management of human waste and solid waste as well as stormwater (drainage) management. By-products from wastewater treatment plants, such as screenings, grit and sewage sludge may also be treated in a wastewater treatment plant.: